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On partial inverse operations in the class of
preradicals of modules

Ion Jardan

Abstract

In the present work two partial operations in the class of preradicals
PR of the category R-Mod of left R-modules are defined and investi-
gated. They are inverse operations for product with respect to meet
and coproduct with respect to join. The criteria of existence of such op-
erations are indicated. Main properties of this operation and relations
with the lattice operations in PR are shown. Some particular cases are
mentioned.

1 Introduction and preliminary facts

This work is devoted to the theory of radicals of modules ([1]-[5]) and
contains the definitions and the investigations of two new operations in the
class of preradicals of a module category.

Let R be a ring with unity and R-Mod be the category of unitary left
R-modules. We remind that a preradical r of R-Mod is a subfunctor of
identity functor of R-Mod, i.e. r associates to every module M ∈ R-Mod a
submodule r (M) ⊆M such that f (r (M)) ⊆ r (M ′) for every R-morphism
f : M →M ′.

We denote by PR the class of all preradicals of the category R-Mod. In
this class four operation are defined [1]:
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1) the meet ∧
α∈A

rα of a family of preradicals {rα}α∈A :(
∧
α∈A

rα

)
(M)

def
=

⋂
α∈A

rα (M), M ∈ R-Mod;

2) the join ∨
α∈A

rα of a family of preradicals {rα}α∈A :(
∨
α∈A

rα

)
(M)

def
=
∑
α∈A

rα (M), M ∈ R-Mod;

3) the product r · s of preradicals r, s ∈ PR:

(r · s) (M)
def
= r (s (M)), M ∈ R-Mod ;

4) the coproduct r# s of preradicals r, s ∈ PR:

[(r# s) (M)]/s (M)
def
= r (M/s (M) ), M ∈ R-Mod.

In the class PR the partial order relation ” ≤ ” is defined by the rule:

r1 ≤ r2
def⇔ r1 (M) ⊆ r2 (M) for every M ∈ R-Mod.

The class PR is a large complete lattice with respect to the operations of
meet and join.

We remark that in the book [1] the coproduct is denoted by (r : s) and is
defined by the rule [(r : s) (M)]/r (M) = s (M/r (M) ), so (r# s) = (s : r).

The following properties of distributivity hold ([1]-[5]):

(1) (∧ rα) · s = ∧ (rα · s); (2) (∨ rα) · s = ∨ (rα · s);
(3) (∧ rα) # s = ∧ (rα # s); (4) (∨ rα) # s = ∨ (rα # s)

for every family {rα}α∈A ⊆ PR and s ∈ PR.
Using these relations some new inverse operations can be defined in the

class PR. Two of them, the left quotient with respect to join and the left
coquotient with respect to meet, have been defined and investigated in [11]
and [12]. In this work we will study other two inverse operations, namely, the
left quotient with respect to meet and the left coquotient with respect to join.
Similar questions are discussed in [8]-[10].

Now we remind the principal types of preradicals. A preradical r ∈ PR is
called:

– idempotent preradical, if r (r (M)) = r (M) for every M ∈ R-Mod (or
if r · r = r);

– radical, if r (M/r (M)) = 0 for every M ∈ R-Mod (or if r# r = r);

– idempotent radical, if both previous conditions are fulfilled;

– prime, if r 6= 1 and for any t1, t2 ∈ PR, t1 · t2 ≤ r implies t1 ≤ r or
t2 ≤ r [6];

– coprime, if r 6= 0 and for any t1, t2 ∈ PR, t1 # t2 ≥ r implies t1 ≥ r
or t2 ≥ r [7];
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– ∧-prime, if for any t1, t2 ∈ PR, t1 ∧ t2 ≤ r implies t1 ≤ r or t2 ≤ r
[6];

– ∨-coprime, if for any t1, t2 ∈ PR, t1∨ t2 ≥ r implies t1 ≥ r or t2 ≥ r
[7];

– irreducible, if for any t1, t2 ∈ PR, t1∧ t2 = r implies t1 = r or t2 = r
[6];

– coirreducible, if for any t1, t2 ∈ PR, t1 ∨ t2 = r implies t1 = r or
t2 = r [7].

The operations of meet and join are commutative and associative, while
the operations of product and coproduct are associative. By means of these
operations four preradicals are obtained which are arranged in the following
order:

r · s ≤ r ∧ s ≤ r ∨ s ≤ r# s
for every r, s ∈ PR.

During this work we will use the following facts and notions from general
theory of preradicals (see [1]−[7]).

Lemma 1.1. (Monotony of the product) For any s1, s2 ∈ PR, s1 ≤ s2 im-
plies that r · s1 ≤ r · s2 and s1 · r ≤ s2 · r for every r ∈ PR. �

Lemma 1.2. (Monotony of the coproduct) For any s1, s2 ∈ PR, s1 ≤ s2
implies that r# s1 ≤ r# s2 and s1 # r ≤ s2 # r for every r ∈ PR. �

Lemma 1.3. For every r, s, t ∈ PR we have:

1) (r · s) # t ≥ (r# t) · (s# t);

2) (r# s) · t ≤ (r · t) # (s · t). �

Definition 1.1. The equalizer of preradical r is the preradical
e (r) = ∧{rα ∈ PR | rα · r = r}.

Definition 1.2. The co-equalizer of preradical r is the preradical
c (r) = ∨{rα ∈ PR | rα # r = r}.

2 Left quotient with respect to meet

Now we introduce and investigate the inverse operation of product with
respect to meet in the class of preradicals PR of category R-Mod.

Definition 2.1. Let r, s ∈ PR. The left quotient with respect to meet of r
by s is defined as the least preradical among rα ∈ PR with the property
rα · s ≥ r. We denote this preradical by r ∧/· s.
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We will call r the numerator and s the denominator of the quotient
r ∧/· s.

Now we will study question on the existence of the left quotient with respect
to meet.

Lemma 2.1. Let r, s ∈ PR. The left quotient r ∧/· s of r by s with
respect to meet exists if and only if r ≤ s and it can be presented in the form
r ∧/· s = ∧{rα ∈ PR | rα · s ≥ r}.

Proof. (⇒) If the left quotient r ∧/· s exists, then there exists rα ∈ PR
such that rα · s ≥ r. Since 1 ≥ rα, from the monotony of product we have
1 · s ≥ rα · s, therefore s ≥ r.

(⇐) Let r ≤ s. Then 1 · s = s ≥ r, therefore the family of prerad-
icals {rα ∈ PR | rα · s ≥ r} is not empty. So we can consider the preradi-
cal ∧{rα ∈ PR | rα · s ≥ r}, for which by distributivity of product relative to

meet we obtain

(
∧

rα· s≥ r
rα

)
· s = ∧

rα· s≥ r
(rα · s) ≥ r. By the construction

it is clear that the preradical ∧
rα· s≥ r

rα is the least preradical of PR with

property rα · s ≥ r. Therefore we have r ∧/· s = ∧{rα ∈ PR | rα · s ≥ r}.

Moreover, by the proof of Lemma 2.1 we have that (r ∧/· s) · s ≥ r, what
we will often use further.

Lemma 2.2. Let r, s ∈ PR and r ≤ s. Then r ∧/· s ≥ r.

Proof. The condition r ≤ s ensures the existence of the left quotient r ∧/· s.
Since r ∧/· s ≥ (r ∧/· s) · s, by the definition of the left quotient (r ∧/· s) · s ≥ r,
it follows that r ∧/· s ≥ r.

The next two statements show the concordance of the left quotient r ∧/· s
with the order relation (≤) of PR.

Proposition 2.3. (Monotony in the numerator) Let r1, r2 ∈ PR and r1 ≤ r2.
Then for every preradical s ≥ r2 we have r1 ∧/· s ≤ r2 ∧/· s.

Proof. By Lemma 2.1 there exist the left quotients r1 ∧/· s, r2 ∧/· s and

r1 ∧/· s = ∧{rα ∈ PR | rα · s ≥ r1}, r2 ∧/· s = ∧
{
r′β ∈ PR

∣∣∣ r′β · s ≥ r2}.

Let r1 ≤ r2 and r′β · s ≥ r2. Then r′β · s ≥ r1, so each r′β is one of preradi-

cals rα. Therefore ∧{rα ∈ PR | rα · s ≥ r1} ≤ ∧
{
r′β ∈ PR

∣∣∣ r′β · s ≥ r2}, i.e.

r1 ∧/· s ≤ r2 ∧/· s.

Proposition 2.4. (Antimonotony in the denominator) Let s1, s2 ∈ PR and
s1 ≤ s2. Then for every preradical r ≤ s1 we have r ∧/· s1 ≥ r ∧/· s2.
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Proof. By Lemma 2.1 there exist the left quotients r ∧/· s1, r ∧/· s2 and

r ∧/· s1 = ∧{rα ∈ PR | rα · s1 ≥ r} and r ∧/· s2 = ∧
{
r′β ∈ PR

∣∣∣ r′β · s2 ≥ r}.

Let rα · s1 ≥ r. If s1 ≤ s2, then from the monotony of product we have
rα · s1 ≤ rα · s2, but rα · s1 ≥ r, therefore rα · s2 ≥ r. So each prerad-
ical rα is one of preradicals r′β , what implies ∧{rα ∈ PR | rα · s1 ≥ r} ≥
∧
{
r′β ∈ PR

∣∣∣ r′β · s2 ≥ r} , i.e. r ∧/· s1 ≥ r ∧/· s2.

The following fact is very useful for the further investigations.

Proposition 2.5. Let r, s ∈ PR and r ≤ s. Then for every t ∈ PR we
have:

r ≤ t · s⇔ r ∧/· s ≤ t.

Proof. By Lemma 2.1 there exists the left quotient r ∧/· s and r ∧/· s =
∧{rα ∈ PR | rα · s ≥ r}.

(⇒) Let t · s ≥ r. Then t is one of preradicals rα, therefore t ≥
∧{rα ∈ PR | rα · s ≥ r}, i.e. t ≥ r ∧/· s.

(⇐) Let r ∧/· s ≤ t. From the monotony of product (r ∧/· s) · s ≤ t · s,
but by the definition of the left quotient we have (r ∧/· s) · s ≥ r, therefore
t · s ≥ r.

In continuation we show some properties of the studied operation.

Proposition 2.6. For every preradicals r, s ∈ PR we have:

(r · s) ∧/· s ≤ r.

Proof. Since r · s ≤ s , then there exists the left quotient (r · s) ∧/· s
and from Lemma 2.1 (r · s) ∧/· s = ∧{ tα ∈ PR | tα · s ≥ r · s}. Because
r · s ≥ r · s, the preradical r is one of preradicals tα, therefore r ≥
∧{ tα ∈ PR | tα · s ≥ r · s}, i.e. r ≥ (r · s) ∧/· s.

Proposition 2.7. Let r, s ∈ PR. The following relations are true:

1) (r ∧/· s) ∧/· t = r ∧/· (t · s) for any preradical t with the property
t · s ≥ r;

2) (r · s) ∧/· t ≤ r · (s ∧/· t) for any preradical t ≥ s.

Proof. 1) If r ≤ t · s, then there exists the left quotient r ∧/· (t · s). In this
case, since t · s ≤ s we have r ≤ s, so there exists the left quotient r ∧/· s.
Moreover, by Proposition 2.5 t · s ≥ r ⇔ r ∧/· s ≤ t, which ensures the existence
of the left quotient (r ∧/· s) ∧/· t. From Lemma 2.1 we have r ∧/· (t · s) =
∧{rα ∈ PR | rα · (t · s) ≥ r} and (r ∧/· s) ∧/· t = ∧{ tβ ∈ PR | tβ · t ≥ r ∧/· s}.

(≤) Let rα · (t · s) ≥ r. Since (rα · t) · s = rα · (t · s) we have
(rα · t) · s ≥ r, but r ∧/· s is the least preradical with such property, so
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rα · t ≥ r ∧/· s. Hence each rα is one of preradicals tβ , which implies
that for any rα we have rα ≥ ∧{ tβ ∈ PR | tβ · t ≥ r ∧/· s} for every α,
therefore ∧{rα ∈ PR | rα · (t · s) ≥ r} ≥ ∧{ tβ ∈ PR | tβ · t ≥ r ∧/· s} , i.e.
r ∧/· (t · s) ≥ (r ∧/· s) ∧/· t.

(≥) Let tβ · t ≥ r ∧/· s. Using the associativity and the monotony of
product of preradicals we obtain tβ · (t · s) = (tβ · t) · s ≥ (r ∧/· s) · s,
by the definition of the left quotient (r ∧/· s) · s ≥ r, so tβ · (t · s) ≥
r. This shows that each preradical tβ is one of preradicals rα, there-
fore we have ∧{ tβ ∈ PR | tβ · t ≥ r ∧/· s} ≥ ∧{rα ∈ PR | rα · (t · s) ≥ r}, i.e
(r ∧/· s) ∧/· t ≥ r ∧/· (t · s).

2) The relation s ≤ t ensures the existence of the left quotient s ∧/· t
and since r · s ≤ s we have r · s ≤ t, so there exists and the left quotient
(r · s) ∧/· t.

By the definition of the left quotient s ≤ (s ∧/· t) · t. Using the monotony
and the property of associativity of product of preradicals it follows that r ·
s ≤ r · [(s ∧/· t) · t ] = [ r · (s ∧/· t)] · t. Applying Proposition 2.5 for relation
r · s ≤ [ r · (s ∧/· t)] · t we obtain (r · s) ∧/· t ≤ r · (s ∧/· t).

Proposition 2.8. Let r, s, t ∈ PR and r ≤ s. Then the following relations
hold:

1) (r ∧/· t) ∧/· (s ∧/· t) ≤ r ∧/· s or (r ∧/· s) · (s ∧/· t) ≥ r ∧/· t for any
preradical t ≥ s;

2) (r · t) ∧/· (s · t) ≤ r ∧/· s for any preradical t ∈ PR.

Proof. 1) The conditions r ≤ s and s ≤ t ensure the existence of the left
quotients r ∧/· s and s ∧/· t. In this case, since r ≤ s and s ≤ t we have
r ≤ t, so there exists the left quotient r ∧/· t. Moreover, since r ≤ s , from
the monotony of the left quotient it follows that r ∧/· t ≤ s ∧/· t, which ensures
the existence of the left quotient (r ∧/· t) ∧/· (s ∧/· t).

From Proposition 2.5 the relations of this statement are equivalent.
By the definition of the left quotient r ≤ (r ∧/· s) · s and s ≤ (s ∧/· t) · t.

Therefore, using the monotony and the associativity of product we obtain r ≤
(r ∧/· s)· s ≤ (r ∧/· s)·[(s ∧/· t) · t ] = [(r ∧/· s) · (s ∧/· t)]· t. Applying Proposition
2.5 for the relation r ≤ [(r ∧/· s) · (s ∧/· t)] · t we have r ∧/· t ≤ (r ∧/· s) ·(s ∧/· t).

2) The condition r ≤ s ensures the existence of the left quotient r ∧/· s.
In this case, by the monotony of product we have r · t ≤ s · t for every
t ∈ PR, so there exists the left quotient (r · t) ∧/· (s · t).

From Proposition 2.5 the relation of this statement is equivalent to the
relation r · t ≤ (r ∧/· s) · (s · t).

By the definition of the left quotient r ≤ (r ∧/· s) · s, therefore applying the
monotony and the associativity of product we obtain r · t ≤ [(r ∧/· s) · s ] · t =
(r ∧/· s) · (s · t).
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Now we will discuss the question on the relations beetween the left quotient
with respect to meet and the lattice operations of PR.

Proposition 2.9. (The left distributivity of the left quotient r ∧/· s relative to
join) Let s ∈ PR. Then for any family of preradicals {rα ∈ PR | rα ≤ s, α ∈ A}
the following relation holds:(

∨
α∈A

rα

)
∧/· s = ∨

α∈A
(rα ∧/· s).

Proof. The relations rα ≤ s, α ∈ A ensure the existence of the left quotients
rα ∧/· s, α ∈ A. But in this case ∨

α∈A
rα ≤ s, so there exists the left quotient(

∨
α∈A

rα

)
∧/· s.

(≤) By the definition of the left quotient rα ≤ (rα ∧/· s) · s for all α ∈ A,
which implies that ∨

α∈A
rα ≤ ∨

α∈A
[(rα ∧/· s) · s ]. Using the distributivity of

product of preradicals relative to join ∨
α∈A

rα ≤
[
∨
α∈A

(rα ∧/· s)

]
· s. Applying

Proposition 2.5 we obtain

(
∨
α∈A

rα

)
∧/· s ≤ ∨

α∈A
(rα ∧/· s).

(≥) From Lemma 2.1

(
∨
α∈A

rα

)
∧/· s = ∧

{
tβ ∈ PR | tβ · s ≥ ∨

α∈A
rα

}
and rα ∧/· s = ∧{r′γ ∈ PR | r′γ · s ≥ rα}.

Let tβ · s ≥ ∨
α∈A

rα. Since ∨
α∈A

rα ≥ rα for every α ∈ A we have

tβ · s ≥ rα, hence each preradical tβ is one of preradicals r′γ . There-

fore ∧
{
tβ ∈ PR | tβ · s ≥ ∨

α∈A
rα

}
≥ ∧{r′γ ∈ PR | r′γ · s ≥ rα} for every

α ∈ A, i.e.

(
∨
α∈A

rα

)
∧/· s ≥ rα ∧/· s for every α ∈ A, which implies that(

∨
α∈A

rα

)
∧/· s ≥ ∨

α∈A
(rα ∧/· s).

Proposition 2.10. In the class PR the following relations are true:

1)

(
∧
α∈A

rα

)
∧/· s ≤ ∧

α∈A
(rα ∧/· s), when rα ≤ s for any α ∈ A;

2) r ∧/·

(
∧
α∈A

sα

)
≥ ∨
α∈A

(r ∧/· sα), when r ≤ sα for any α ∈ A;

3) r ∧/·

(
∨
α∈A

sα

)
≤ ∧
α∈A

(r ∧/· sα), when r ≤ sα for any α ∈ A.

Proof. 1) The conditions rα ≤ s, α ∈ A ensure the existence of the left
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quotients rα ∧/· s, α ∈ A. But in this case ∧
α∈A

rα ≤ s, so there exists the left

quotient

(
∧
α∈A

rα

)
∧/· s.

By the definition of the left quotient we have rα ≤ (rα ∧/· s) · s for
any α ∈ A, which implies that ∧

α∈A
rα ≤ ∧

α∈A
[(rα ∧/· s) · s]. Applying the

distributivity of product of preradicals relative to meet it follows that ∧
α∈A

rα ≤[
∧
α∈A

(rα ∧/· s)

]
· s and from Proposition 2.5 we obtain

(
∧
α∈A

rα

)
∧/· s ≤

∧
α∈A

(rα ∧/· s).

2) The conditions r ≤ sα, α ∈ A ensure the existence of the left quotients
r ∧/· sα, α ∈ A. But in this case r ≤ ∧

α∈A
sα, which implies the existence of

the left quotient r ∧/·

(
∧
α∈A

sα

)
.

For any α ∈ A we have ∧
α∈A

sα ≤ sα. Using Proposition 2.4 we ob-

tain r ∧/·

(
∧
α∈A

sα

)
≥ r ∧/· sα for all α ∈ A, therefore r ∧/·

(
∧
α∈A

sα

)
≥

∨
α∈A

(r ∧/· sα).

3) The conditions r ≤ sα, α ∈ A ensure the existence of the left quotients
r ∧/· sα, α ∈ A. Moreover, in this case r ≤ ∨

α∈A
sα, so there exists the left

quotient r ∧/·

(
∨
α∈A

sα

)
.

For any α ∈ A we have ∨
α∈A

sα ≥ sα. Using Proposition 2.4 we ob-

tain r ∧/·

(
∨
α∈A

sα

)
≤ r ∧/· sα for all α ∈ A, therefore r ∧/·

(
∨
α∈A

sα

)
≤

∧
α∈A

(r ∧/· sα).

Now we will consider some particular cases of the left quotient r ∧/· s.

Proposition 2.11. Let r, s ∈ PR. Then:

1) r ∧/· r = e (r) (see Definition 1.1);

2) r ∧/· 1 = r;

3) 0 ∧/· s = 0.

Proof. Using the definition of the left quotient we obtain:

1) r ∧/· r = ∧{rα ∈ PR | rα · r ≥ r} = ∧{rα ∈ PR | rα · r = r} = e (r);

2) r ∧/· 1 = ∧{rα ∈ PR | rα · 1 ≥ r} = ∧{rα ∈ PR | rα ≥ r} = r;

3) 0 ∧/· s = ∧{rα ∈ PR | rα · s ≥ 0} = ∧{rα | rα ∈ PR} = 0.
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By Proposition 2.11 we have the following particular cases:

(1) 0 ∧/· 0 = 0 ; (2) 1 ∧/· 1 = 1.
Applying to the relation r ≤ s ≤ 1 the statement of Proposition 2.4, we

obtain r ∧/· r ≥ r ∧/· s ≥ r ∧/· 1, hence r ≤ r ∧/· s ≤ e (r).
Moreover, the distributivity of product of preradicals relative to meet im-

plies e (r) · r =

(
∧

rα· r= r
rα

)
· r = ∧

rα· r= r
(rα · r) = r for every r ∈ PR.

The following statement shows some properties of equalizer.

Proposition 2.12. Let r, s ∈ PR and r ≤ s. Then:

1) e (r) · (r ∧/· s) = r ∧/· s;

2) (r ∧/· s) · e (s) = r ∧/· s;

3) (r ∧/· s) ∧/· e (s) = r ∧/· s.

Proof. The condition r ≤ s ensures the existence of the left quotient r ∧/· s.

1) e (r) · (r ∧/· s) = (r ∧/· r) · (r ∧/· s). Applying Proposition 2.8(1) we obtain
(r ∧/· r) · (r ∧/· s) ≥ r ∧/· s, but (r ∧/· r) · (r ∧/· s) ≤ r ∧/· s, so e (r) · (r ∧/· s) =
r ∧/· s.

2) (r ∧/· s) · e (s) = (r ∧/· s) · (s ∧/· s). Applying Proposition 2.8(1) we obtain
(r ∧/· s) · (s ∧/· s) ≥ r ∧/· s, but (r ∧/· s) · (s ∧/· s) ≤ r ∧/· s, so (r ∧/· s) · e (s) =
r ∧/· s.

3) (r ∧/· s) ∧/· e (s) = (r ∧/· s) ∧/· (s ∧/· s). Using Proposition 2.8(1) we obtain
(r ∧/· s) ∧/· (s ∧/· s) ≤ r ∧/· s, but from Lemma 2.2 (r ∧/· s) ∧/· (s ∧/· s) ≥ r ∧/· s,
so we have (r ∧/· s) ∧/· e (s) = r ∧/· s.

We will now consider the case of idempotent preradicals.

Remark 2.13. ([5]) For every preradical r ∈ PR we have e (r) is an
idempotent preradical.

Proof. e (r) · e (r) = (r ∧/· r) · (r ∧/· r). From Proposition 2.8(1) we have
(r ∧/· r)·(r ∧/· r) ≥ r ∧/· r, but (r ∧/· r)·(r ∧/· r) ≤ r ∧/· r, hence e (r)· e (r) = e (r),
i.e. e (r) is an idempotent preradical.

Proposition 2.14. ([5]) The preradical r ∈ PR is idempotent if and only if
e (r) = r.

Proof. (⇒) By Definition 1.2 e (r) = ∧{rα ∈ PR | rα · r = r}. If r is an
idempotent preradical, i.e. r · r = r, then r is one of preradicals rα.
Therefore r ≥ ∧{rα ∈ PR | rα · r = r}, i.e. r ≥ e (r), but e (r) ≥ r, so
e (r) = r.

(⇐) Let e (r) = r. Then r · r = e (r) · r. Since e (r) · r = r, so r · r = r,
i.e. r is idempotent.
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Moreover, since r ≤ r ∧/· s ≤ e (r), if r is idempotent, then r ∧/· s = r.

Proposition 2.15. Let r, s ∈ PR and s be an idempotent preradical. Then:

1) r ∧/· s ≤ s with r ≤ s;
2) (r ∧/· s) · s = r ∧/· s with r ≤ s;
3) (r ∧/· s) ∧/· s = r ∧/· s with r ≤ s;
4) (r · s) ∧/· s = r · s.

Proof. 1) The condition r ≤ s ensures the existence of the left quotient r ∧/· s.
Let r ≤ s . From the monotony of the left quotient r ∧/· s ≤ s ∧/· s. If s

is idempotent, then r ∧/· s ≤ s.
2) The condition r ≤ s ensures the existence of the left quotient r ∧/· s.

If s is an idempotent preradical, then (r ∧/· s) · s = (r ∧/· s) · e (s). By
Proposition 2.12 we obtain (r ∧/· s) · s = r ∧/· s.

3) The condition r ≤ s ensures the existence of the left quotient r ∧/· s.
Moreover, from 1) r ∧/· s ≤ s, which implies the existence of the left quotient
(r ∧/· s) ∧/· s.

From Proposition 2.7(1) (r ∧/· s) ∧/· s = r ∧/· (s · s). If s is an idempotent
preradical, then (r ∧/· s) ∧/· s = r ∧/· s.

4) From Proposition 2.7(2) (r · s) ∧/· s ≤ r · (s ∧/· s). If s is an idempotent
preradical, then (r · s) ∧/· s ≤ r · s. But from Lemma 2.2 (r · s) ∧/· s ≥ r · s,
therefore (r · s) ∧/· s = r · s.

The next two statements show when the cancellation properties for the left
quotient hold (see Proposition 2.6).

Proposition 2.16. Let r, s ∈ PR. The following conditions are equivalent:

1) r = (r · s) ∧/· s;
2) r = t ∧/· s for some preradical t ≤ s.

Proof. The condition t ≤ s ensures the existence of the left quotient t ∧/· s.
1)⇒ 2) If r = (r · s) ∧/· s, then r = t ∧/· s with t = r · s.
2)⇒ 1) Let r = t ∧/· s for some preradical t ≤ s. By the definition of the

left quotient (t ∧/· s)· s ≥ t. Using the monotony of the left quotient we obtain
[(t ∧/· s) · s] ∧/· s ≥ t ∧/· s. But from Proposition 2.6 [(t ∧/· s) · s] ∧/· s ≤ t ∧/· s,
thus [(t ∧/· s) · s] ∧/· s = t ∧/· s. Since t ∧/· s = r, we have (r · s) ∧/· s = r.

Proposition 2.17. Let r, s ∈ PR. The following conditions are equivalent:

1) r = (r ∧/· s) · s with r ≤ s;
2) r = t · s for some preradical t ∈ PR.
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Proof. The condition r ≤ s ensures the existence of the left quotient r ∧/· s.
1)⇒ 2) If r = (r ∧/· s) · s, then r = t · s with t = r ∧/· s.
2) ⇒ 1) Let r = t · s for some preradical t ∈ PR. By Proposition 2.6

(t · s) ∧/· s ≤ t. Applying the monotony of product we obtain [(t · s) ∧/· s]· s ≤
t · s. But from the definition of the left quotient [(t · s) ∧/· s] · s ≥ t · s,
therefore [(t · s) ∧/· s] · s = t · s. Since t · s = r, we have (r ∧/· s) · s = r.

Now we will study the behaviour of the left quotient r ∧/· s in the case of
such types of preradicals as coprime, ∨-coprime and coirreducible (see Section
1).

Proposition 2.18. If r is a coprime preradical, then the preradical r ∧/· s
is coprime for any preradical s ≥ r.

Proof. The condition r ≤ s ensures the existence of the left quotient r ∧/· s.
Let the preradical r 6= 0 be coprime and t1 # t2 ≥ r ∧/· s for some

preradicals t1, t2 ∈ PR. Using Proposition 2.5 we obtain r ≤ (t1 # t2) · s.
From Lemma 1.3(2) (t1 # t2) · s ≤ (t1 · s) # (t2 · s), so r ≤ (t1 · s) # (t2 · s).
Since r is coprime, it follows that r ≤ t1· s or r ≤ t2· s. Applying Proposition
2.5 we obtain r ∧/· s ≤ t1 or r ∧/· s ≤ t2. So for every t1, t2 ∈ PR with
t1 # t2 ≥ r ∧/· s we have t1 ≥ r ∧/· s or t2 ≥ r ∧/· s, which means that the
preradical r ∧/· s is coprime.

Proposition 2.19. If the preradical r is ∨-coprime, then the preradical
r ∧/· s is ∨-coprime for any preradical s ≥ r.

Proof. The condition r ≤ s ensures the existence of the left quotient r ∧/· s.
Let r be ∨-coprime and t1∨t2 ≥ r ∧/· s, for some preradicals t1, t2 ∈ PR.

Applying Proposition 2.5 we obtain r ≤ (t1 ∨ t2) · s. From the distributivity
of product of preradicals relative to join r ≤ (t1 · s) ∨ (t2 · s). Since r is
∨-coprime it follows that r ≤ t1 · s or r ≤ t2 · s. From Proposition 2.5 we
obtain r ∧/· s ≤ t1 or r ∧/· s ≤ t2. So for every preradicals t1, t2 ∈ PR with
t1 ∨ t2 ≥ r ∧/· s we have t1 ≥ r ∧/· s or t2 ≥ r ∧/· s, which means that the
preradical r ∧/· s is ∨-coprime.

Proposition 2.20. Let r, s ∈ PR and r = t · s for some preradical t ∈ PR.
If the preradical r is coirreducible, then the preradical r ∧/· s is coirreducible.

Proof. By the condition r = t · s we have r ≤ s, which ensures the existence
of the left quotient r ∧/· s.

Let r be coirreducible and r ∧/· s = t1∨ t2 for some preradicals t1, t2 ∈ PR.
If r = t · s for some preradical t, then by Proposition 2.17 r = (r ∧/· s) · s,
thus r = (t1 ∨ t2) · s. From the distributivity of product of preradicals
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relative to join r = (t1 · s) ∨ (t2 · s). Since r is coirreducible it follows that
t1 · s = r or t2 · s = r.

If t1 · s = r, then from Proposition 2.5 we have t1 ≥ r ∧/· s. But
t1 ≤ t1 ∨ t2 = r ∧/· s, therefore t1 = r ∧/· s.

If t2 · s = r, then similarly we obtain t2 = r ∧/· s.
So for every preradicals t1, t2 ∈ PR with t1 ∨ t2 = r ∧/· s we have

t1 = r ∧/· s or t2 = r ∧/· s, which means that the preradical r ∧/· s is
coirreducible.

Moreover, if the preradical r is coprime, then its equalizer e (r) is coprime
([7]).

The operation of the left quotient with respect to meet implies some order
relations between the associated preradicals.

Corollary 2.21. 1) For every preradicals r, s ∈ PR with r ≤ s the following
relations hold:

r · s ≤ (r · s) ∧/· s ≤ r ≤ (r ∧/· s) · s ≤ r ∧/· s;
2) If the preradical s is idempotent, then

r · s = (r · s) ∧/· s ≤ r ≤ (r ∧/· s) · s = r ∧/· s ≤ s
for every preradical r ≤ s. �

3 Left coquotient with respect to join

In this section the similar questions are discussed as in the preceding one
for the inverse operation of coproduct with respect to join in the class of
preradicals PR of category R-Mod.

Definition 3.1. Let r, s ∈ PR. The left coquotient with respect to join of r
by s is defined as the greatest preradical among rα ∈ PR with the property
rα # s ≤ r. We denote this preradical by r ∨/# s.

We will call r the numerator and s the denominator of the left coquotient
r ∨/# s.

The following statement is the answer to the question on the existence of
the left coquotient with respect to join.

Lemma 3.1. Let r, s ∈ PR. The left coquotient r ∨/# s of r by s with
respect to join exists if and only if r ≥ s and it can be presented in the form
r ∨/# s = ∨{rα ∈ PR | rα # s ≤ r}.

Proof. (⇒) Let there exists the left coquotient r ∨/# s. Then ∃rα ∈ PR such
that rα # s ≤ r. Since 0 ≤ rα, from the monotony of coproduct of preradicals
we obtain 0 # s ≤ rα # s, i.e. s ≤ rα # s, therefore s ≤ r.
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(⇐) Let r ≥ s. Then 0 # s = s ≤ r, therefore the family of preradi-
cals {rα ∈ PR | rα # s ≤ r} is not empty. So we can consider the preradi-
cal ∨{rα ∈ PR | rα # s ≤ r}. Using the distributivity of coproduct relative

to join of preradicals we have

(
∨

rα # s≤ r
rα

)
# s = ∨

rα # s≤ r
(rα # s), but since

rα # s ≤ r for every preradical rα it follows that ∨
rα # s≤ r

(rα # s) ≤ r, i.e.(
∨

rα # s≤ r
rα

)
# s ≤ r. By the construction of this preradical is clear that it

is the greatest preradical of PR with the property rα # s ≤ r. Therefore
∨{rα ∈ PR | rα # s ≤ r} = r ∨/# s.

Moreover, by the proof of Lemma 3.1 we have that (r ∨/# s) # s ≤ r.

Lemma 3.2. For every r, s ∈ PR with r ≥ s we have r ∨/# s ≤ r.

Proof. The condition r ≥ s ensures the existence of the left coquotient r ∨/# s.
Since r ∨/# s ≤ (r ∨/# s) # s, by the definition of the left coquotient we obtain
that r ∨/# s ≤ r.

Now we show the behaviour of the left coquotient relative to the partial
order (≤) of the class PR.

Proposition 3.3. (Monotony in the numerator) Let r1, r2 ∈ PR and r1 ≤ r2.
Then for every preradical s ≤ r1 we have r1 ∨/# s ≤ r2 ∨/# s.

Proof. Since s ≤ r1 ≤ r2, from Lemma 3.1 there exist the left coquo-
tients r1 ∨/# s, r2 ∨/# s and r1 ∨/# s = ∨{rα ∈ PR | rα # s ≤ r1}, r2 ∨/# s =

∨
{
r′β ∈ PR

∣∣∣ r′β # s ≤ r2
}

.

The relations r1 ≤ r2 and rα # s ≤ r1 imply rα # s ≤ r2, so each rα is
one of preradicals r′β , from where it follows that ∨{rα ∈ PR | rα # s ≤ r1} ≤
∨
{
r′β ∈ PR

∣∣∣ r′β # s ≤ r2
}

, so r1 ∨/# s ≤ r2 ∨/# s.

Proposition 3.4. (Antimonotony in the denominator) Let s1, s2 ∈ PR and
s1 ≤ s2. Then for every preradical r ≥ s2 we have r ∨/# s1 ≥ r ∨/# s2.

Proof. Since r ≥ s2 ≥ s1 from Lemma 3.1 there exist the left coquotient
r ∨/# s1, r ∨/# s2 and r ∨/# s1 = ∨{rα ∈ PR | rα # s1 ≤ r} and r ∨/# s2 =

∨
{
r′β ∈ PR

∣∣∣ r′β # s2 ≤ r
}

.

Let s1 ≤ s2, from the monotony of coproduct of preradicals we have
r′β # s1 ≤ r′β # s2, but if r′β # s2 ≤ r, then r′β # s1 ≤ r. Therefore each preradi-

cal r′β is one of preradicals rα, which implies that ∨
{
r′β ∈ PR

∣∣∣ r′β # s2 ≤ r
}
≤

∨{rα ∈ PR | rα # s1 ≤ r}, i.e. r ∨/# s2 ≤ r ∨/# s1.
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The next statement is useful for applications.

Proposition 3.5. Let r, s ∈ PR and r ≥ s. Then for every preradical
t ∈ PR we have:

r ≥ t# s⇔ r ∨/# s ≥ t.

Proof. From Lemma 3.1 there exists the left coquotient r ∨/# s and r ∨/# s =
∨{rα ∈ PR | rα # s ≤ r}.

(⇒) Let t# s ≤ r. Then t is one of preradicals rα, hence t ≤
∨{rα ∈ PR | rα # s ≤ r} = r ∨/# s.

(⇐) Let t ≤ r ∨/# s. From the monotony of coproduct t# s ≤ (r ∨/# s) # s .
By the definition of the left coquotient we have (r ∨/# s) # s ≤ r, thus t# s ≤
r.

In the following statements some properties of the left coquotient are indi-
cated.

Proposition 3.6. For every preradicals r, s ∈ PR we have:
(r# s) ∨/# s ≥ r.

Proof. Since r# s ≥ s, from Lemma 3.1 there exists the left coquotient
(r# s) ∨/# s and (r# s) ∨/# s = ∨{rα ∈ PR | rα # s ≤ r# s}.

Since r# s ≤ r# s, we have that the preradical r is one of preradicals
rα, therefore r ≤ ∨{rα ∈ PR | rα # s ≤ r# s}, i.e. r ≤ (r# s) ∨/# s.

Proposition 3.7. Let r, s, t ∈ PR. The following relations are true:

1) (r ∨/# s) ∨/# t = r ∨/# (t# s) with r ≥ t# s;
2) (r# s) ∨/# t ≥ r# (s ∨/# t) with s ≥ t.

Proof. 1) If r ≥ t# s, then there exists the left coquotient r ∨/# (t# s). In
this case, since t# s ≥ s we have r ≥ s, so there exists the left coquotient
r ∨/# s. Moreover, by Proposition 3.5 t# s ≤ r ⇔ r ∨/# s ≥ t, which ensures
the existence of the left coquotient (r ∨/# s) ∨/# t. From Lemma 3.1 we have
r ∨/# s = ∨{rα ∈ PR | rα # s ≤ r}, r ∨/# (t# s) = ∨{sβ ∈ PR | sβ # (t# s) ≤ r}
and (r ∨/# s) ∨/# t = ∨{ tγ ∈ PR | tγ # t ≤ r ∨/# s}.

(≤) Let tγ # t ≤ r ∨/# s. Using the monotony of coproduct of preradi-
cals we obtain (tγ # t) # s ≤ (r ∨/# s) # s, but from the definition of the left
coquotient (r ∨/# s) # s ≤ r, so (tγ # t) # s ≤ r. By the associativity of co-
product of preradicals we have tγ # (t# s) ≤ r, which means that each pre-
radical tγ is one of preradicals sβ , therefore ∨{ tγ ∈ PR | tγ # t ≤ r ∨/# s} ≤
∨{sβ ∈ PR | sβ # (t# s) ≤ r}, i.e (r ∨/# s) ∨/# t ≤ r ∨/# (t# s).
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(≥) Let sβ # (t# s) ≤ r. Since (sβ # t) # s = sβ # (t# s) we have
(sβ # t) # s ≤ r, but r ∨/# s is the greatest preradical among rα ∈ PR with the
property rα # s ≤ r, so sβ # t ≤ r ∨/# s, which means that sβ is one of prerad-
icals tγ . Thus ∨{sβ ∈ PR | sβ # (t# s) ≤ r} ≤ ∨{ tγ ∈ PR | tγ # t ≤ r ∨/# s},
i.e. r ∨/# (t# s) ≤ (r ∨/# s) ∨/# t.

2) The condition s ≥ t ensures the existence of the left coquotient s ∨/# t.
Moreover, since r# s ≥ s we have r# s ≥ t, so there exists the left coquotient
(r# s) ∨/# t.

By the definition of the left coquotient s ≥ (s ∨/# t) # t, from the monotony
and the property of associativity of coproduct we obtain r# s ≥ r# [(s ∨/# t) # t ] =
[ r# (s ∨/# t)] # t. Applying Proposition 3.5 we have (r# s) ∨/# t ≥ r# (s ∨/# t).

Proposition 3.8. Let r, s, t ∈ PR and r ≥ s. The following relations hold:

1) (r ∨/# t) ∨/# (s ∨/# t) ≥ r ∨/# s or (r ∨/# s) # (s ∨/# t) ≤ r ∨/# t for every pre-
radical t ≤ s;

2) (r# t) ∨/# (s# t) ≥ r ∨/# s for every preradical t ∈ PR.

Proof. 1) The condition r ≥ s ensures the existence of the left coquotient
r ∨/# s. In the this case if t ≤ s, then r ≥ t, so there exist the left coquotients
s ∨/# t and r ∨/# t. Moreover, since r ≥ s, from the monotony of the left
coquotient we have r ∨/# t ≥ s ∨/# t, which ensures the existence of the left
coquotien (r ∨/# t) ∨/# (s ∨/# t).

From Proposition 3.5 we have
(r ∨/# t) ∨/# (s ∨/# t) ≥ r ∨/# s⇔ (r ∨/# s) # (s ∨/# t) ≤ r ∨/# t.

By the definition of the left coquotient r ≥ (r ∨/# s) # s and s ≥ (s ∨/# t) # t.
Using the monotony and the property of associativity of coproduct we ob-
tain r ≥ (r ∨/# s) # s ≥ (r ∨/# s) # [(s ∨/# t) # t ] = [(r ∨/# s) # (s ∨/# t)] # t. Applying
Proposition 3.5 we have r ∨/# t ≥ (r ∨/# s) # (s ∨/# t).

2) The condition r ≥ s ensures the existence of the left coquotient r ∨/# s.
Moreover, from the monotony of coproduct we have r# t ≥ s# t for ev-
ery preradical t ∈ PR, which implies the existence of the left coquotient
(r# t) ∨/# (s# t).

From Proposition 3.5 the relation of this statement is equivalent to the
relation r# t ≥ (r ∨/# s) # (s# t).

By the definition of the left coquotient r ≥ (r ∨/# s) # s, using the monotony
and the property of associativity of coproduct of preradicals we obtain r# t ≥
[(r ∨/# s) # s ] # t = (r ∨/# s) # (s# t).

The following two statements show the relation between the left coquotient
with respect to join and the lattice operations of PR.
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Proposition 3.9. (The left distributivity of the left coquotient r ∨/# s rela-
tive to meet) For any preradical s ∈ PR and for any family of preradicals
{rα ∈ PR| rα ≥ s, α ∈ A} the following relation holds:(

∧
α∈A

rα

)
∨/# s = ∧

α∈A
(rα ∨/# s).

Proof. The relations rα ≥ s, α ∈ A ensures the existence of the left coquo-
tients rα ∨/# s, α ∈ A. But in this case ∧

α∈A
rα ≥ s, so there exists the left

coquotient

(
∧
α∈A

rα

)
∨/# s.

(≤) From Lemma 3.1

(
∧
α∈A

rα

)
∨/# s = ∨

{
tβ ∈ PR | tβ # s ≤ ∧

α∈A
rα

}
and rα ∨/# s = ∨{r′γ ∈ PR | r′γ # s ≤ rα}.

Let tβ # s ≤ ∧
α∈A

rα. Since ∧
α∈A

rα ≤ rα for every α ∈ A we have tβ # s ≤
rα, which means that each preradical tβ is one of preradicals r′γ . This implies

∨
{
tβ ∈ PR | tβ # s ≤ ∧

α∈A
rα

}
≤ ∨{r′γ ∈ PR | r′γ # s ≤ rα} for every α ∈ A,

therefore ∨
{
tβ ∈ PR | tβ # s ≤ ∧

α∈A
rα

}
≤ ∧

α∈A
(∨{r′γ ∈ PR | r′γ # s ≤ rα}),

i.e.

(
∧
α∈A

rα

)
∨/# s ≤ ∧

α∈A
(rα ∨/# s).

(≥) By the definition of the left coquotient we have rα ≥ (rα ∨/# s) # s for
every α ∈ A, which implies that ∧

α∈A
rα ≥ ∧

α∈A
[(rα ∨/# s) # s ]. From the dis-

tributivity of coproduct of preradicals relative to meet it follows that ∧
α∈A

rα ≥[
∧
α∈A

(rα ∨/# s)

]
# s. Using Proposition 3.5 we obtain that

(
∧
α∈A

rα

)
∨/# s ≥

∧
α∈A

(rα ∨/# s).

Proposition 3.10. In the class PR the following relations are true:

1)

(
∨
α∈A

rα

)
∨/# s ≥ ∨

α∈A
(rα ∨/# s) for rα ≥ s, α ∈ A;

2) r ∨/#

(
∧
α∈A

sα

)
≥ ∨
α∈A

(r ∨/# sα) for r ≥ sα, α ∈ A;

3) r ∨/#

(
∨
α∈A

sα

)
≤ ∧
α∈A

(r ∨/# sα) for r ≥ sα, α ∈ A.

Proof. 1) The conditions rα ≥ s, α ∈ A ensure the existence of the left
coquotients rα ∨/# s, α ∈ A. In this case ∨

α∈A
rα ≥ s, so there exists the left
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coquotient

(
∨
α∈A

rα

)
∨/# s.

By the definition of the left coquotient we have rα ≥ (rα ∨/# s) # s for
every α ∈ A, which implies that ∨

α∈A
rα ≥ ∨

α∈A
[(rα ∨/# s) # s]. From the dis-

tributivity of coproduct of preradicals relative to join it follows that ∨
α∈A

rα ≥[
∨
α∈A

(rα ∨/# s)

]
# s. Applying Proposition 3.5 we obtain

(
∨
α∈A

rα

)
∨/# s ≥

∨
α∈A

(rα ∨/# s).

2) The conditions r ≥ sα, α ∈ A ensure the existence of the left coquo-
tients r ∨/# sα, α ∈ A. Moreover, in this case r ≥ ∧

α∈A
sα, which implies the

existence of the left coquotient r ∨/#

(
∧
α∈A

sα

)
.

Since ∧
α∈A

sα ≤ sα for every α ∈ A, from Proposition 3.4 we have

r ∧/#

(
∧
α∈A

sα

)
≥ r ∧/# sα for all α ∈ A, therefore r ∧/#

(
∧
α∈A

sα

)
≥ ∨
α∈A

(r ∧/# sα).

3) The conditions r ≥ sα, α ∈ A ensure the existence of the left coquo-
tients r ∨/# sα, α ∈ A. In this case r ≥ ∨

α∈A
sα, which implies the existence of

the left coquotient r ∨/#

(
∨
α∈A

sα

)
.

For every α ∈ A we have ∨
α∈A

sα ≥ sα. Using the antimonotony in the

denominator of the left coquotient it follows that r ∨/#

(
∨
α∈A

sα

)
≤ r ∨/# sα for

all α ∈ A, therefore r ∨/#

(
∨
α∈A

sα

)
≤ ∧
α∈A

(r ∨/# sα).

In continuation we study some particular cases of the left coquotient with
respect to join.

Proposition 3.11. Let r, s ∈ PR. Then:

1) r ∨/# r = c (r) (see Definition 1.2);

2) r ∨/# 0 = r;

3) 1 ∨/# s = 1.

Proof. From the definition of the left coquotient we obtain:

1) r ∨/# r = ∨{rα ∈ PR | rα # r ≤ r} = ∨{rα ∈ PR | rα # r = r} = c (r);

2) r ∨/# 0 = ∨{rα ∈ PR | rα # 0 ≤ r} = ∨{rα ∈ PR | rα ≤ r} = r;

3) 1 ∨/# s = ∨{rα ∈ PR | rα # s ≤ 1} = ∨{rα | rα ∈ PR} = 1.
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By Propositions 3.11 we have the following particular cases:

(1) 0 ∨/# 0 = 0 ; (2) 1 ∨/# 1 = 1.
Applying to the relation r ≥ s ≥ 0 Proposition 3.4 we obtain that

r ∨/# r ≤ r ∨/# s ≤ r ∨/# 0, i.e. c (r) ≤ r ∨/# s ≤ r.
Moreover, from the distributivity of product of preradicals relative to join

we obtain c (r) # r =

(
∨

rα # r= r
rα

)
# r = ∨

rα # r= r
(rα # r) = r for every

r ∈ PR.
The following statement shows some properties of the co-equalizer.

Proposition 3.12. If r, s ∈ PR and r ≥ s, then:

1) c (r) # (r ∨/# s) = r ∨/# s;

2) (r ∨/# s) # c (s) = r ∨/# s;

3) (r ∨/# s) ∨/# c (s) = r ∨/# s.

Proof. The condition r ≥ s ensures the existence of the left coquotient r ∨/# s.

1) c (r) # (r ∨/# s) = (r ∨/# r) # (r ∨/# s). From Proposition 3.8(1) we have
(r ∨/# r) # (r ∨/# s) ≤ r ∨/# s, but (r ∨/# r) # (r ∨/# s) ≥ r ∨/# s, so c (r) # (r ∨/# s) =
r ∨/# s.

2) (r ∨/# s) # c (s) = (r ∨/# s) # (s ∨/# s). From Proposition 3.8(1) we have
(r ∨/# s) # (s ∨/# s) ≤ r ∨/# s, but (r ∨/# s) # (s ∨/# s) ≥ r ∨/# s, so (r ∨/# s) # c (s) =
r ∨/# s.

3) (r ∨/# s) ∨/# c (s) = (r ∨/# s) ∨/# (s ∨/# s). Using Proposition 3.8(1) we obtain
(r ∨/# s) ∨/# (s ∨/# s) ≥ r ∨/# s, but from Lemma 3.2 (r ∨/# s) ∨/# (s ∨/# s) ≤ r ∨/# s, so
(r ∨/# s) ∨/# c (s) = r ∨/# s.

We will now consider the case of radical.

Remark 3.13. ([5]) For every preradical r ∈ PR we have c (r) is a radical.

Proof. c (r) # c (r) = (r ∨/# r) # (r ∨/# r). From Proposition 3.8(1) we have that
(r ∨/# r) # (r ∨/# r) ≤ r ∨/# r, but (r ∨/# r) # (r ∨/# r) ≥ r ∨/# r, hence c (r) # c (r) =
c (r), i.e. c (r) is a radical.

Proposition 3.14. ([5]) Preradical r is a radical if and only if c (r) = r.

Proof. (⇒) By Definition 1.2 c (r) = ∨{rα ∈ PR | rα # r = r}. Let r is
a radical, i.e. r# r = r, hence the preradical r is one of preradicals rα.
Therefore r ≤ ∨{rα ∈ PR | rα # r = r}, i.e. r ≤ c (r), but c (r) ≤ r, so
c (r) = r.

(⇐) Let c (r) = r. Then r# r = c (r) # r, but c (r) # r = r, so r# r = r,
which means that the preradical r is a radical.
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Moreover, since c (r) ≤ r ∨/# s ≤ r, if r is a radical, then r ∨/# s = r.

Proposition 3.15. Let r, s ∈ PR and s is a radical. Then:

1) r ∨/# s ≥ s with r ≥ s;
2) (r ∨/# s) # s = r ∨/# s with r ≥ s;
3) (r ∨/# s) ∨/# s = r ∨/# s with r ≥ s;
4) (r# s) ∨/# s = r# s.

Proof. 1) The condition r ≥ s ensures the existence of the left coquotient
r ∨/# s.

Let r ≥ s . From the monotony of the left coquotient r ∨/# s ≥ s ∨/# s. If
s is a radical, then r ∧/· s ≥ s.
2) The condition r ≥ s ensures the existence of the left coquotient r ∨/# s.

If s is a radical, then (r ∨/# s) # s = (r ∨/# s) # c (s), but Proposition 3.12
(r ∨/# s) # c (s) = r ∨/# s, so (r ∨/# s) # s = r ∨/# s.

3) The condition r ≥ s ensures the existence of the left coquotient r ∨/# s.
Moreover, by 1) r ∨/# s ≥ s, which implies the existence of the left coquotient
(r ∨/# s) ∨/# s.

From Proposition 3.7(1) (r ∨/# s) ∨/# s = r ∨/# (s# s). If s is a radical, then
(r ∨/# s) ∨/# s = r ∨/# s.

4) From Proposition 3.7(2) (r# s) ∨/# s ≥ r# (s ∨/# s). If s is a radical,
then (r# s) ∨/# s ≥ r# s. But by Lemma 3.2 (r# s) ∨/# s ≤ r# s, therefore
(r# s) ∨/# s = r# s.

In the next two statements it is shown when the cancellation properties for
the left coquotient hold (see Proposition 3.6).

Proposition 3.16. Let r, s ∈ PR. The following conditions are equivalent:

1) r = (r# s) ∨/# s;

2) r = t ∨/# s for some preradical t ≥ s.

Proof. The condition t ≥ s ensures the existence of the left coquotient t ∨/# s.
1)⇒ 2) Let r = (r# s) ∨/# s. Then r = t ∨/# s with t = r# s.
2) ⇒ 1) Let r = t ∨/# s for some preradical t ≥ s. By the defini-

tion of the left coquotient (t ∨/# s) # s ≤ t. Applying the monotony of the
left coquotient we obtain [(t ∨/# s) # s] ∨/# s ≤ t ∨/# s, but from Proposition 3.6
[(t ∨/# s) # s] ∨/# s ≥ t ∨/# s, thus [(t ∨/# s) # s] ∨/# s = t ∨/# s. Since t ∨/# s = r we
have (r# s) ∨/# s = r.

Proposition 3.17. Let r, s ∈ PR. The following conditions are equivalent:

1) r = (r ∨/# s) # s with r ≥ s;
2) r = t# s for some preradical t ∈ PR.
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Proof. The condition r ≥ s ensures the existence of the left coquotient r ∨/# s.
1)⇒ 2) Let r = (r ∨/# s) # s. Then r = t# s with t = r ∨/# s.
2) ⇒ 1) Let r = t# s for some preradical t ∈ PR. By Proposition 3.6

(t# s) ∨/# s ≥ t. Using the monotony of coproduct we obtain [(t# s) ∨/# s] # s ≥
t# s, but from the definition of the left coquotient [(t# s) ∨/# s] # s ≤ t# s,
thus [(t# s) ∨/# s] # s = t# s. Since t# s = r, we have (r ∨/# s) # s = r.

In continuation we indicate the behaviour of the left coquotient r ∨/# s in
the case of such types of preradicals as prime, ∧-prime and irreducible.

Proposition 3.18. If r is a prime preradical, then r ∨/# s is a prime
preradical for any preradical s ≤ r.

Proof. The condition r ≥ s ensures the existence of the left coquotient r ∨/# s.
Let the preradical r 6= 1 be prime and t1 · t2 ≤ r ∨/# s for some preradicals

t1, t2 ∈ PR. From Proposition 3.5 we have r ≥ (t1 · t2) # s. By Lemma 1.3(1)
(t1 · t2) # s ≥ (t1# s) · (t2# s), so r ≥ (t1# s) · (t2# s). Since r is prime, it
follows that r ≥ t1# s or r ≥ t2# s. Using Proposition 3.5 we obtain
r ∨/# s ≥ t1 or r ∨/# s ≥ t2. So for every t1, t2 ∈ PR with t1 · t2 ≤ r ∨/# s
we have t1 ≤ r ∨/# s or t2 ≤ r ∨/# s, which means that the preradical r ∨/# s
is prime.

Proposition 3.19. If the preradical r is ∧-prime, then the preradical r ∨/# s
is ∧-prime for any preradical s ≤ r.

Proof. The condition r ≥ s ensures the existence of the left coquotient r ∨/# s.
Let r be ∧-prime and t1 ∧ t2 ≤ r ∨/# s for some preradicals t1, t2 ∈ PR.

From Proposition 3.5 we have r ≥ (t1 ∧ t2) # s. Using the distributivity of
coproduct of preradicals relative to meet we obtain r ≥ (t1# s) ∧ (t2# s).
Since r is ∧-prime, it follows that r ≥ t1# s or r ≥ t2# s. From Proposition
3.5 r ∨/# s ≥ t1 or r ∨/# s ≥ t2. So for every preradicals t1, t2 ∈ PR with
t1 ∧ t2 ≤ r ∨/# s we have t1 ≤ r ∨/# s or t2 ≤ r ∨/# s, which means that the
preradical r ∨/# s is ∧-prime.

Proposition 3.20. Let r, s ∈ PR and r = t# s for some preradical t ∈ PR.
If the preradical r is irreducible, then the preradical r ∨/# s is irreducible.

Proof. By the condition r = t# s we have r ≥ s, which ensures the existence
of the left coquotient r ∨/# s.

Let r be irreducible and r ∨/# s = t1∧ t2 for some preradicals t1, t2 ∈ PR.
If r = t# s for some preradical t, then by Proposition 3.17 r = (r ∨/# s) # s, so
r = (t1 ∧ t2) # s. Using the distributivity of coproduct of preradicals relative
to meet we obtain r = (t1 # s) ∧ (t2 # s). Since r is irreducible, it follows
that r = t1 # s or r = t2 # s. From Proposition 3.5 these relations have the
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form r ∨/# s ≥ t1 or r ∨/# s ≥ t2 respectively. But r ∨/# s = t1 ∧ t2, hence
t1 ≥ r ∨/# s and t2 ≥ r ∨/# s. Therefore we obtain r ∨/# s = t1 or r ∨/# s = t2.
So for every preradicals t1, t2 ∈ PR with t1∧ t2 = r ∨/# s we have t1 = r ∨/# s
or t2 = r ∨/# s, which means that the preradical r ∨/# s is irreducible.

Moreover, if the preradical r is prime, then its co-equalizer c (r) is prime
([6]).

The operation of the left coquotient with respect to join implies some order
relations between the associated preradicals.

Corollary 3.21. 1) For every preradicals r, s ∈ PR with r ≥ s the following
relations hold:

r ∨/# s ≤ (r ∨/# s) # s ≤ r ≤ (r# s) ∨/# s ≤ r# s;
2) If s is a radical, then:

s ≤ r ∨/# s = (r ∨/# s) # s ≤ r ≤ (r# s) ∨/# s = r# s
for every preradical r ≥ s. �

In conclusion we can say that in the class PR of the category R-Mod
two new operations are defined and investigated, namely, left quotient with
respect to meet and left coquotient with respect to join. These operations are
partial in the sense that they do not exist for any two preradicals, but only
under certain conditions. They possess a series of properties related with the
four operations of the class PR and are consistent with a series of a notions
and constructions from the theory of radicals.
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